jueves, 16 de abril de 2009

SISTEMAS DE ENERGIA

  • SISTEMA ATP - PC
Se caracteriza porque la obtención de la energía se realiza sin utilizar oxígeno, y sin generar sustancias residuales.
Para ello, este sistema emplea las reservas musculares de ATP y de fosfocreatina. Las reservas de fosfocreatina suelen ser unas tres veces superiores a las de ATP.

La fosfocreatina (PC), es un compuesto formado por dos sustancias: un compuesto que forma creatina y fosfato. El enlace entre estas sustancias almacena una gran cantidad de energía química.
PC + ADP ATP + C (enzima creatina fosfoquinasa)
Cuando existe una gran demanda de energía, que no se puede cubrir por vía aeróbica debido al tiempo que tarda este sistema en comenzar a producirla, en primer lugar se utilizan las reservas de ATP, y a continuación, se degrada la PC, separándose su grupo fosfato y liberando una gran cantidad de energía.
La energía liberada se acopla con los requerimientos energéticos necesarios para resintetizar el ATP a partir del ADP y del fosfato inorgánico, de forma que el ATP es degradado y resintetizado a gran velocidad.

Este sistema es empleado hasta que se agotan las reservas de ATP y PC que el músculo tiene en forma de reservas. Si los requerimientos energéticos son altos, el sistema decae pasados unos 20 o 30 segundos, momento en que se agotan las reservas de PC. Pero las reservas de fosfocreatina se pueden regenerar de forma muy rápida, con uno o dos minutos de recuperación, vuelve hasta alrededor del 90% de su nivel normal.

La importancia de este sistema radica en la rápida disponibilidad de energía, más que en la cantidad, y también en la rápida recuperación de los niveles iniciales de PC.
  • SISTEMA GLUCOLITICO
Este sistema es conocido como glucólisis anaeróbica. El término "glucólisis" se refiere a la degradación del azúcar. En este sistema, la descomposición del azúcar ( hidratos de carbono, una de las sustancias alimenticias) provee la energía necesaria con la cual se elabora el ATP, cuando el azúcar sólo está parcialmente descompuesto, uno de los productos finales es el ácido láctico (de ahí el nombre de "sistema del ácido láctico).
La glucosa es el 99% de la cantidad total de azúcares que circulan por la sangre. La glucosa de la sangre procede de la digestión de los hidratos de carbono y de la descomposición del glucógeno hepático. El glucógeno es sintetizado a partir de la glucosa por un proceso llamado glucogénesis. Se almacena en el hígado o en los músculos hasta que se necesita. En este momento, el glucógeno se descompone en glucosa - 1 - fosfato a través del proceso de la glucogenólisis.
Antes de que la glucosa o el glucógeno puedan usarse para generar energía, deben convertirse en un compuesto llamado glucosa-6-fosfato. La conversión de una molécula de glucosa requiere una molécula de ATP. En la conversión del glucógeno, se forma glucosa-6-fosfato a partir de glucosa-1-fosfato sin este gasto de energía. La glucólisis comienza una vez se ha formado la glucosa-6-fosfato.
La glucólisis produce al final el ácido pirúvico. Este proceso no requiere oxígeno, pero el uso de oxígeno determina el destino del ácido pirúvico formado por la glucólisis.

Al referirnos al sistema glucolítico nos estamos refiriendo a los procesos de glucólisis cuando ocurre sin la intervención del oxígeno. En este caso, un ácido llamado pirúvico se convierte en ácido láctico.
La glucólisis, que es mucho más compleja que el sistema ATP-PC, requiere 12 reacciones enzimáticas para la descomposición de glucógeno en ácido láctico. Todas estas enzimas operan dentro del citoplasma de las células.
La ganancia neta de este proceso es de 3 moles de ATP formado por cada molécula de glucógeno descompuesto. Si se usa glucosa en lugar de glucógeno, el beneficio es de sólo 2 moles de ATP porque se usa 1 mol para la conversión de glucosa en glucosa-6-fosfato.
Este sistema de energía no produce grandes cantidades de ATP. A pesar de esta limitación, las acciones combinadas de los sistemas ATP-PC y glucolítico permiten a los músculos generar fuerza incluso cuando el aporte de oxígeno es limitado. Estos dos sistemas predominan durante los primeros minutos de ejercicio de intensidad elevada.
Otra importante limitación de la glucólisis anaeróbica es que ocasiona una acumulación de ácido láctico en los músculos y en los fluidos corporales.
  • SISTEMA OXIDATIVO

El mismo nombre lo dice, dentro de este sistema entra a tallar el oxígeno, existe la descomposición completa del glucógeno en dióxido de carbono (CO2) y agua (H2O), los cuales producen una cantidad de energía suficiente para elaborar una gran cantidad de moles de ATP.

El sistema final de producción de energía celular es el sistema oxidativo. Éste es el más complejo de los tres sistemas energéticos, El proceso mediante el cual el cuerpo descompone combustibles con la ayuda de oxígeno para generar energía se llama respiración celular.
Dado que se emplea oxígeno, éste es un proceso aeróbico. Esta producción oxidativa de ATP se produce dentro de organismos especiales de la célula: las mitocondrias. En los músculos, son adyacentes a las miofibrillas y se hallan también distribuidas por el sarcoplasma.

Los músculos necesitan un aporte constante de energía para producir continuamente la fuerza necesaria durante las actividades de larga duración.
A diferencia de la producción anaeróbica de ATP, el sistema oxidativo produce una tremenda cantidad de energía, por lo que el metabolismo aeróbico es el método principal de producción de energía durante las pruebas de resistencia. Esto impone considerables demandas a la capacidad del cuerpo para liberar oxígeno es los músculos activos.


No hay comentarios:

Publicar un comentario